<u>Parte B:</u> Caratterizzazione meccanica del Gesso intatto in prove triassiali

4. Prove di compressione triassiale su gesso intatto

La seconda parte della campagna sperimentale ha riguardato la caratterizzazione meccanica del gesso intatto in prove triassiali. Nel presente paragrafo dapprima verranno illustrate le procedure di esecuzione della prova triassiale, le modalita della preparazione dei provini e una descrizione dell'apparecchiatura utilizzata, in seguito verranno presentati i risultati delle prove triassiali effettuate. Tali risultati, integrati da quelli delle prove monoassiali e di trazione forniti dal Committente, verranno utilizzati per definire la curva inviluppo degli stati tensionali a rottura con differenti criteri.

4.1. Cenni apparecchiatura triassiale

Con prove triassiali è possibile sottoporre il campione ad uno stato di sforzo verticale σ_1 , differente dagli sforzi orizzontali $\sigma_2 e \sigma_3$ uguali tra loro e pari alla pressione di cella in modo tale da avere uno stato tensionale omogeneo all'interno del provino. Continuando ad incrementare lo sforzo assiale (compressione standard) mantenendo un valore di sforzo radiale (o orizzonale) è possibile portare a rottura il provino e misurare la resistenza a compressione in condizioni cosidette confinate.

Fig. 38:Schema della prova di compressione triassiale e Stati di sforzo "ideali" in un campione sottoposto a prova triassiale

Le prove triassiali su roccia differiscono in parte da quelle su campioni di suolo in quanto:

- a) la fase di consolidazione del provino è di norma assente per prove su roccia.
- b) La fase di saturazione del provino di roccia, se necessaria è estremamente delicata poiché è difficile assicurarsi che un campione di roccia sia effettivamente saturo. Ad esempio, la tecnica seguita per la saturazione di campioni di suolo, che si basa sulla constatazione che per il campione saturo il coefficiente *B* di Skempton sia pari a 1, non è applicabile alle rocce. Infatti per campioni di roccia saturata, a causa della rigidezza dello scheletro solido non trascurabile rispetto a quella dell'acqua, il coefficiente *B* può essere <1.</p>
- c) Le prove si effettuano a pressioni di cella elevate che perciò richiedono l'utilizzo di celle in acciaio di notevole spessore. Di norma la sezione del pistone ha area

uguale a quella della sezione del campione. Particolari difficoltà di esecuzione della prova riguardano:

- centraggio del carico verticale
- permeabilità della membrana;
- centraggio del carico verticale;
- mancanza del controllo visivo del campione durante l'esecuzione della prova.

La strumentazione è costituita da una cella triassiale, da un sistema di carico assiale mediante una pressa e da un sistema di confinamento laterale fornito da una pompa idraulica:

Per la presente campagna sperimentale, le pressioni di confinamento p delle tre prove triassiali prescritte dall'Allegato B del contratto sono state scelte pari a:

in modo da integrare i risultati ottenuti sempre sullo stesso gesso da prove triassiali eseguite dal laboratorio Geotest Italia su gessi del Comune di Dossena per pressioni di confinamento più basse (p=0,3,5,7 MPa). I risultati forniti sono riportati nella seguente Tab. 12. In questo modo è stato possibile arricchire i dati a rottura per diversi confinamenti e avere così inviluppi di rottura più completi

σ ₃ (MPa)	σ ₁ (MPa)	q (MPa)
0	19.98	19.98
3	29.36	26.36
5	35.93	30.93
7	47.54	40.54

Tab. 12:Valori di resistenza a rottura del gesso di Dossena per prove di compressione triassiale

4.2. Preparazione dei provini

Il materiale per le prove è stato fornito direttamente dal Committente nella forma di spezzoni di carota ricavati dai sondaggi S1 ed S2 effettuati nell'area della Cava di Gesso in località Carale presso il Comune di Santa Brigida (Fig. 39).

L'apparecchiatura triassiale per rocce ad alte pressioni di confinamento disponibile presso il DIS è ottimizzata per provini cilindrici aventi diametro di 10 cm ed altezza pari a 20 cm; dal momento che il diametro delle carote di gesso fornite è pari a 8.3cm, si è deciso di preparare provini cilindrici aventi lo stesso diametro D della carota ed un'altezza di circa 19 cm tale da mantenere il rapporto H/D di poco superiore a 2.

Fig. 39:Spezzoni di carota dei sondaggi S1 ed S2 alla profondità compresa tra 10-15m (a) e 15 20 m (b)

Per ogni provino di forma cilindrica si è poi provveduto alla rettifica delle facce con una particolare macchina dotata di due dischi rotanti con denti diamantati in modo da ottenere un provino con le facce parallele tra di loro in modo da aderire perfettamente alla base di appoggio nella parte inferiore e alla sezione del pistone nella parte superiore (Fig. 40)

Fig. 40: Macchina per la rettifica delle facce dei provini

Attorno ai provini di 8.3 cm si è posta della gomma di caucciù posta per ottenere un diametro di 10 cm compatibile con la sezione del pistone della macchina così come mostrato in Fig. 41.

Fig. 41: a) Provino di gesso di d=83mm ; b) Provino con gomma di caucciù c) provino avvolto nella membrana

4.3. Descrizione dell'apparecchiatura utilizzata

L'apparecchiatura triassiale è costituita essenzialmente da due flange metalliche, una di base con un'apertura munita di rubinetto per il collegamento delle tubazioni di alimentazione della cella ed una di sommità, separate da una camera cilindrica. Sulla cella triassiale è montato un pistone per trasferire rigidamente al provino la deformazione di compressione imposta da una pressa.

La prova è stata eseguita utilizzando come impianto l'unità di controllo triassiale (UCT) che è un sistema per prove a compressione bi-triassiali su provini in roccia, cemento e materiali similari.

Il sistema è costituito da una pressa, una centralina oleodinamica e un elaboratore che assicura il controllo dell'apparecchiatura.

Fig. 42: a) Pressa; b) Centralina oleodinamica; c) Elaboratore

La pressa è composta da un basamento, una traversa di reazione, 4 colonne e un accessorio per il posizionamento della cella di prova fissato ad una colonna.

Nel basamento è inserito l'attuatore (un pistone a doppio effetto simmetrico).Sul lato posteriore sono posizionati la servovalvola per il controllo del carico assiale, i filtri, l'accumulatore e gli attacchi oleodinamici. La traversa di reazione supporta il trasduttore di carico con relativo snodo sferico.

Fig. 43: a)Accessorio posizionamento cella di carico; b)Attacchi oleodinamici; c)Servovalvola, filtri, accumulatore

La centralina oleodinamica contiene tre pompe che forniscono le seguenti pressioni regolabili singolarmente e fornite di manometro:

- pressione ausiliaria di pilotaggio;
- pressione di linea verticale;
- pressione di linea laterale.

La centralina è inoltre provvista di circuito di raffreddamento ad acqua termostatato automaticamente.

La macchina ha una capacità di carico assiale massimo di 2000 kN mentre la capacità di carico laterale massimo è di 32 MPa. Il pistone che si appoggia sul provino ha un diametro di 10 cm e una corsa di 60 mm. Avendo il pistone un diametro di 10 cm anche il provino da testare deve avere lo stesso diametro ed altezza pari a 20cm in modo da rispettare il vincolo sul rapporto tra l' altezza e il diametro del provino che è posto secondo la normativa ISRM pari a 2.

Le seguenti immagini (Fig. 44) mostrano la successione delle varie fasi di posizionamento del campione cilindrico all'interno della cella triassiale:

Base di appoggio

Posizionamento e fissaggio pistone

Disco metallico copertura base appoggio

Sollevamento cella

Posizionamento e fissaggio provino

Cella in acciaio per conteminemto

Posizionamento cella

Cella pronta per prova

Assemblato il campione all'interno della cella si procede al riempimento della cella triassiale con il fluido (olio). La prima fase della prova consiste nella compressione idrostatica. Lo stato di sforzo agente sul campione nella prima fase è idrostatico, vale a dire che la compressione è esercitata in ugual misura in ogni direzione di sollecitazione (Fig. 38):

Fig. 44:Fasi di montaggio macchina triassiale e provino

 $\sigma_1 = \sigma_2 = \sigma_3 = p_{cella}$ $\sigma_1 = P/A$ $\sigma_2 = \sigma_3 = p_{cella}$

La seconda fase della prova consiste invece nella compressione deviatorica in cui si ha l'incremento di carico assiale $\Delta \sigma$, costante nel tempo:

Lo stato di sforzo agente sul campione nella seconda fase è (Fig. 38)::

$$\sigma_1 = p + \Delta \sigma_1$$

 $\sigma_2 = \sigma_3 = p$
 $\sigma_1 dev = q = (\sigma_1 - p)$

4.4. Esecuzione delle prove

Vengono di seguito riportati i risultati delle prove triassiali che hanno permesso di valutare il comportamento meccanico per tre differenti valori della pressione di confinamento.

4.4.1. . Prova n°1 a 10 MPa

La prova di compressione triassiale n°1 (sigla Pr2d83-14/15) è stata eseguita in controllo di carico su un provino di gesso prelevato a una profondità compresa tra 14 e 15 metri dal piano campagna e di diametro 8.3 cm e altezza H pari a 19.29cm.

Le caratteristiche geometriche del provino sono riassunte nella seguente Tab. 13:

Sigla spezzone	Sp19.6-14/15
Sigla provino	Pr2d83-14/15
Profondità (m da p.c.)	14/15
Diametro provino "D" (cm)	8.3
Altezza provino "H" (cm)	19.29
Rapporto H/D	2.32
Area di base (cm ²)	54.11
Peso (g)	2415.3
Densità (kg/m ³)	2.359
Peso specifico (kN/m ³)	23.15
Peso di volume (g/cm ³)	2.31

 Tab. 13: Caratteristiche geometriche del provino 1

Il provino di gesso è stato sottoposto inizialmente a una compressione isotropa fino a un valore di pressione di 10 MPa e successivamente a una compressione uniassiale in controllo di carico con velocità di avanzamento della macchina pari a 0.05 kN/s. Il percorso di carico a cui è stato sottoposto il provino è il seguente:

Tempo (s)	Carico assiale (kN)	Pressione confinamento (bar)	Intervallo di lettura (s)
0	0	0	0
1	4	4	0.5
4	4	4	0.5
1100	55	100	0.5
1130	55	100	0.5
20000	1000	100	1
20060	1000	100	1
40000	2000	100	1

Tab. 14: Percorso di carico triassiale

Si è imposto di avere come condizione iniziale a macchina ferma un carico assiale sul provino di 4 kN che tenesse conto del peso del pistone e una pressione di confinamento di 4 bar. La compressione isotropa al valore di pressione di 10 MPa viene raggiunta dopo 1100 secondi e per un carico assiale di 55 kN. Le deformazioni assiali vengono misurate dal trasduttore di spostamento verticale LVDT.

Osservando il grafico q-p (Fig. 45b) si possono notare le due fasi di compressione isotropa fino a 10 MPa e di compressione uniassiale fino a raggiungere la rottura del provino che avviene per un valore del deviatore q pari a 43.06 MPa.

Fig. 45: Prova n°1:a) curva sforzo- deformazione assiale; b) Percorso degli sforzi nel piano triassiale; c)deformazione – durata prova (tempo)

Nel grafico σ_a - ε_a di (Fig. 45a) si osserva inizialmente una fase in cui il comportamento del materiale è elastico-lineare (fino al punto in cui la microstruttura del materiale non evolve e si hanno legami stabili tra le particelle. Il punto A è definito come punto di snervamento o *yield point* ovvero quello oltre il quale parte della deformazione è irreversibile. Nel tratto compreso tra A e B la relazione tra sforzo-deformazione è non lineare e si osserva nel provino l'evoluzione della microstruttura con il danneggiamento dei legami tra le particelle e la conseguente progressiva estensione delle microfratture fino alla rottura che avviene nel punto B. La rottura avviene per un valore di sforzo assiale pari a 53.06 MPa che equivale a un carico applicato di 28.7 ton. Raggiunto il valore di picco il provino si è rotto completamente secondo due piani preferenziali: uno inclinato a 45° e l'altro sub-orizzontale. Nella Tab. 15 sono riassunti i parametri a rottura e la rigidezza E (pari a 17 GPA) ricavati dalla prova di compressione triassiale Pr2d83-14/15:

sforzo principale radiale σ ₃ (MPa)	10
sforzo principale assiale σ_1 (MPa)	53.1
deviatore q (MPa)	43.1
p' (MPa)	24.4
carico a rottura (ton)	28.7
E _t statico (GPa)	17
eta=M=q/p	1.8

Tab. 15: Parametri calcolati a rottura per la prova 1

Fig. 46: Prova n°1: Provino a fine prova.

4.4.2. Prova n°2 a 15 MPa.

La prova di compressione triassiale n°2 (sigla Pr1d83-29/30) anch'essa è stata eseguita in controllo di carico su un provino di gesso prelevato a una profondità compresa tra 29 e 30 metri dal piano campagna e di diametro 8.3. Le caratteristiche geometriche del provino sono riassunte nella seguente Tab. 16:

Sigla spezzone	Sp20.7-29/30
Sigla provino	Pr1d83-29/30
Profondità (m da p.c.)	29/30
Diametro provino "D" (cm)	8.3
Altezza provino "H" (cm)	19.186
Rapporto H/D	2.31
Area di base (cm ²)	54.11
Peso (g)	2423.8
Densità (kg/m ³)	2.38
Peso specifico (kN/m ³)	23.35
Peso di volume (g/cm ³)	2.33

Tab. 16: Caratteristiche geometriche del provino 2

Il provino di gesso è stato sottoposto inizialmente a una compressione isotropa fino a un valore di pressione di 15 MPa e successivamente a una compressione uniassiale in controllo di carico con velocità di avanzamento della macchina pari a 0.05 kN/s. Il percorso di carico a cui è stato sottoposto il provino è il seguente:

Tempo (s)	Carico assiale (kN)	Pressione confinamento (bar)	Intervallo di lettura (s)
0	0	0	0
3	5	4	0.5
4	5	4	0.5
5	5	4	0.5
1640	82	150	0.5
1700	82	150	0.5
30000	1500	150	0.5
30060	1500	150	0.5
60000	0	0	0.5
Tab. 17: Percorso di carico			

Sforzi - Deformazioni

a)

Deformazioni - Tempo

Fig. 47: Prova n°2: a) curva sforzo- deformazione assiale; b) Percorso degli sforzi nel piano triassiale; c)deformazione – durata prova (tempo)

Si è imposto di avere come condizione iniziale a macchina ferma un carico assiale sul provino di 5 kN che tenesse conto del peso del pistone e una pressione di confinamento di 4 bar. La compressione isotropa al valore di pressione di 15 MPa viene raggiunta dopo

1640 secondi e per un carico assiale di 82 kN. Le deformazioni assiali vengono misurate dal trasduttore di spostamento verticale LVDT.

Osservando il grafico q-p (Fig. 47b) si possono notare le due fasi di compressione isotropa fino a 15 MPa e di compressione uniassiale fino a raggiungere la rottura del provino che avviene per un valore del deviatore q pari a 68.17 MPa.

sforzo principale radiale σ ₃ (MPa)	15
sforzo principale assiale σ_1 (MPa)	83.2
deviatore q (MPa)	68.2
p' (MPa)	37.7
carico a rottura (ton)	45
E _t statico (GPa)	20
eta=M=q/p	1.8

Tab. 18: Parametri calcolati a rottura

La rottura avviene per un valore di sforzo assiale pari a 83.2 MPa che equivale a un carico applicato di 45 ton. Raggiunto il valore di picco il provino si è rotto completamente secondo due piani preferenziali entrambi inclinati a 45° e simmetrici tra di loro. Dall'andamento della curva nel piano σ - ε_a (Fig. 47a) si osserva ricava una rigidezza pari a 20 GPa.

Nella Tab. 18 sono riassunti i parametri a rottura ricavati dalla prova di compressione triassiale Pr1d83-29/30:

Fig. 48: Prova n°1: Provino a fine prova.

4.4.3. Prova n°3 a 30 MPa

La prova di compressione triassiale n°3 (Sigla Pr3d83-19/20) è stata eseguita in controllo di carico su un provino di gesso prelevato a una profondità compresa tra 19 e 20 metri dal piano campagna e di diametro 8.3 cm . Le caratteristiche geometriche del provino sono riassunte nella seguente Tab. 19 :

Sigla spezzone	Sp60.5-19/20
Sigla provino	Pr3d83-19/20
Profondità (m da p.c.)	19/20
Diametro provino "D" (cm)	8.3
Altezza provino "H" (cm)	18.98
Rapporto H/D	2.29
Area di base (cm ²)	54.11
Peso (g)	2361.2
Densità (kg/m ³)	2.34
Peso specifico (kN/m ³)	22.99
Peso di volume (g/cm ³)	2.30

Tab. 19: Caratteristiche geometriche del provino 3

Il provino di gesso è stato sottoposto inizialmente a una compressione isotropa fino a un valore di pressione di 30 MPa e successivamente a una compressione uniassiale in controllo di carico con velocità di avanzamento della macchina pari a 0.05 kN/s. Il percorso di carico a cui è stato sottoposto il provino è il seguente:

Tempo (s)	Carico assiale (kN)	Pressione confinamento (bar)	Intervallo di lettura (s)	
0	0	0	0	
3	5	4	0.5	
4	5	4	0.5	
5	5 4		0.5	
3260	163	300	0.5	
3300	163	300	0.5	
30000	1500	300	0.5	
30060	1500	300	0.5	
60000	0	0	0.5	

Tab. 20: Percorso di carico

Si è imposto di avere come condizione iniziale a macchina ferma un carico assiale sul provino di 5 kN che tenesse conto del peso del pistone e una pressione di confinamento di 4 bar. La compressione isotropa al valore di pressione di 30 MPa viene raggiunta dopo 3260 secondi e per un carico assiale di 163 kN. Le deformazioni assiali vengono misurate dal trasduttore di spostamento verticale LVDT.

Osservando il grafico q-p (Fig. 49b) si possono notare le due fasi di compressione isotropa fino a 30 MPa e di compressione uniassiale fino a raggiungere la rottura del provino che avviene per un valore del deviatore q pari a 86.96 MPa.

Sforzi - Deformazioni

Fig. 49: Prova n°3: a) curva sforzo- deformazione assiale; b) Percorso degli sforzi nel piano triassiale; c)deformazione – durata prova (tempo)

La rottura (Fig. 49a) avviene per un valore di sforzo assiale pari a 116.96 MPa che equivale a un carico applicato di 63.3 ton. Raggiunto il valore di picco il provino si è rotto completamente secondo due piani preferenziali uno inclinato di 45° e l'altro suborizzontale nella parte bassa del provino. La rigidezza del materiale risulta pari a 20 GPa.

Nella Tab. 21 sono riassunti i parametri a rottura ricavati dalla prova di compressione triassiale Pr3d83-19/20:

sforzo principale radiale σ ₃ (MPa)	30
sforzo principale assiale σ ₁ (MPa)	116.96
deviatore q (MPa)	86.96
p' (MPa)	59
carico a rottura (ton)	63.3
E _t statico (GPa)	20
eta=M=q/p	1.5

Tab. 21: Parametri calcolati a rottura

Fig. 50: Prova n°1: Provino a fine prova.

In Fig. 51 vengono rappresentati su un unico grafico le curve sforzo-deformazione assiali relative alle pressioni di confinamento di 10, 15, 30 MPa

Sforzi - Deformazioni

Fig. 51: Curve sforzi-deformazioni assiali per le tre prove effettuate.

Si osserva (Fig. 51a) un aumento della resistenza di picco all'aumentare della pressione di confinamento che passa da 53,1 MPa per una pressione di confinamento di 10 MPa a 117 MPa per una pressione di confinamento di 30 MPa.

4.5. Criteri di rottura

È noto che per determinare lo stato tensionale critico per un materiale, è necessario introdurre un criterio di rottura, ovvero una relazione tra gli sforzi principali a rottura.

Tracciate quindi le curve sforzi-deformazioni per ogni prova condotta a p=cost=10, 15, 30 MPa e determinata la resistenza di picco (σ_f) e la rigidezza o modulo di Young tangente al 50% del caricoEt₅₀ si sono determinati sul diagramma τ - σ gli stati tensionali a rottura (cerchi di Mohr) e successivamente si è tracciato l'inviluppo dei cerchi di Mohr corrispondenti alla situazione di picco per le prove eseguite a pressioni di confinamento di 10, 15, 30 MPa; sono stati quindi stimati i valori dei paramentri di resistenza per differenti criteri di rottura utilizzando anche alcuni dati di stati tensionale a rottura a differenti pressioni di confinamento forniti dal Committente.

4.5.1. Criterio di rottura di Mohr-Coulomb

Il criterio di Mohr-Coulomb si basa sull'ipotesi, semplificativa, che la dipendenza tra la resistenza a compressione e la pressione di cella sia lineare:

Fig. 52: Criterio di rottura di Mohr-Coulomb con il "tension cut-off"

Il punto di tangenza di ciascun cerchio con la curva inviluppo indica i valori delle tensioni normale e tangenziale sul piano di rottura del provino, nonché l'orientazione di questo piano rispetto agli assi principali del provino.

$$\sigma_n = \frac{1}{2} * (\sigma_1 + \sigma_2) + \frac{1}{2} * (\sigma_1 - \sigma_3) * \cos 2\beta$$
$$\tau = \frac{1}{2} * (\sigma_1 - \sigma_3) * \operatorname{sen} 2\beta$$

L'inviluppo ottenuto dalle prove di compressione triassiale e di trazione indiretta sul gesso ha un andamento decisamente non lineare del tipo mostrato in Fig. 53:

Fig. 53: Inviluppo di rottura curvilineo

Pertanto volendo utilizzare il criterio di Mohr Coulomb al fine di determinare il valore di coesione *c* e dell'angolo di attrito ϕ si è considerato un inviluppo di rottura costituito da due spezzate lineari che approssimano in maniera più soddisfacente l'inviluppo curvilineo. Dall'intercetta della prima spezzata con l'asse delle τ si è ricavato il valore di coesione e dalla pendenza della retta si è invece ricavato il valore dell'angolo d' attrito che risultano rispettivamente pari a 3 MPa e a 41,3° per il primo tratto valido fino ad un valore di sforzo normale (sigma) pari a 32 MPa. Per il secondo tratto della spezzata valido per valori di sforzo normale superiori a 32 MPa i parametri da considerarsi sono 23.2° per l'angolo di attrito e 16 MPa per la coesione (vedere Fig. 54).

Fig. 54: Inviluppo di rottura del gesso ottenuto con due spezzate lineari

4.5.2. . Criterio di rottura di Hoek-Brown (1980)

Il criterio di rottura empirico di Hoek-Brown rappresenta un inviluppo non lineare tra gli sforzi principali maggiore e minore e tra gli sforzi di taglio e normali a rottura ottenuti dalle prove di compressione monoassiale e triassiale e di trazione. Il criterio di Hoek-Brown è quindi rappresentativo del comportamento a rottura del gesso.

La relazione empirica tra gli sforzi principali a rottura è definita dalla seguente equazione:

$$\sigma_1 = \sigma_3 + \sigma_c \sqrt{s + m \frac{\sigma_3}{\sigma_c}}$$
(4.1)

dove σ_1 è lo sforzo principale maggiore a rottura; σ_3 lo sforzo principale minore; σ_c lo sforzo di compressione monoasiale della roccia intatta; *m* ed *s* sono invece delle costanti che dipendono dalle caratteristiche della roccia e dal suo grado di alterazione precedente al raggiungimento della condizione di rottura.

Per una roccia intatta la costante *s* è posta pari a 1 mentre per una roccia degradata *s*<1 ed è uguale a zero per un ammasso roccioso molto degradato.

La resistenza a trazione uniassiale del campione è ricavata ponendo $\sigma_1=0$ nell'equazione 4.1 e risolvendo l'equazione per $\sigma_3 = \sigma_7$:

$$\sigma_t = \frac{\sigma_c}{2} (m - \sqrt{m^2 + 4s}) \tag{4.2}$$

Quando *s*=0 si ottiene dalla eq.4.2 σ_i =0 a rappresentare un materiale completamente destrutturato. Per una roccia intatta con *s*=1 la costante *m*>>1 e in prima approssimazione è definita dal rapporto tra lo sforzo di compressione uniassiale e la resistenza a trazione uniassiale:

$$m \cong \frac{\sigma_c}{|\sigma_t|}$$

Tuttavia per le difficoltà legate alla valutazione della resistenza a trazione uniassiale è preferibile considerare la costante *m* semplicemente come un parametro empirico in grado di adattare la curva inviluppo ai risultati ottenuti sperimentalmente.

Il criterio di rottura di Hoek-Brown definito nel piano di Mohr è il seguente:

$$\sigma = \sigma_3 + \frac{\tau_m^2}{\tau_m + \frac{m\sigma_c}{8}}$$
$$\tau = (\sigma - \sigma_3)\sqrt{1 + \frac{m\sigma_c}{4\tau_m}}$$

dove:

$$\tau_m = \frac{1}{2}(\sigma_1 - \sigma_3)$$

1

Dalla Fig. 53 si osserva che il valore normalizzato di $\sigma \in \tau$ rispettivamente pari a:

$$\sigma_n = \frac{\sigma}{\sigma_c}$$

$$\tau_n = \frac{\tau}{\sigma_c}$$

sono correlati da un'equazione del tipo:

$$\tau_n = A(\sigma_n - \sigma_{tn})^B$$

dove σ_{tn} è la resistenza a trazione normalizzata della roccia e pari a:

$$\sigma_{tn} = \frac{1}{2}(m - \sqrt{m^2 + 4s})$$

mentre A e B sono delle costanti che dipendono dal valore di m.

In

Tab. 22 vengono riportati I valori dei parametri assunti per la definizione dell'inviluppo di rottura per il gesso intatto. Tale inviluppo è mostrato sia nel piano sforzo verticale – sfrozo orizzontale (con anche i dati del Gesso di Dossena) sia nel piano di Mohr in Fig. 56 e Fig. 55 rispettivamente.

S	m	Α	В
1	12	1	0,72

Tab. 22: Parametri dell'inviluppo di rottura di Hoek-Brown per il gesso

Fig. 55: Inviluppo di rottura di Hoek-Brown per il gesso nel piano di Mohr

Fig. 56: Inviluppo di rottura di Hoek-Brown per il gesso nel piano degli sforzi principali (sono qui considerati anche i dati delle prove effettuate sul gesso di Dossena)

Conclusioni generali

La presente relazione raccoglie i risultati delle prove sperimentali su miscele cementizie e su gesso intatto realizzate nell'ambito del contratto denominato "Verifiche e prove di laboratorio a carattere geotecnico ed idraulico su alcune miscele di materiali" stipulato tra il Comune di Santa Brigida ed il Dipartimento di Ingegneria Strutturale del Politecnico di Milano.

Nella parte A sono stati presentati i risultati effettuati su 6 miscele cementizie la cui composizione è stata indicata dal Committente. Si è trattato di ottenere una caratterizzazione meccanica di tali miscele in relazione al tempo e alle condizioni di maturazione. Come già osservato a conclusione della parte A la miscela 5 offre il miglior compromesso in termini di resistenza e deformabilità in relazione ai costi.

Nella parte B invece sono stati presentati i risultati ottenuti da prove triassiali sul Gesso intatto effettuato a differenti valori di confinamento. Grazie a questi risultati è stato possibile realizzare una buona caratterizzazione meccanica del Gesso intatto stabilendo i valori dei parametri dei criteri di rottura più diffusi in Meccanica delle Rocce.

Milano, 5 Aprile 2005

Il relatore Prof. Ing. Roberto Nova

Appendice A

APPENDICE A

In questa sezione si riportano i dati relativi alla campagna sperimentale corredati di tutti i grafici che, per ragioni di spazio, sono stati omessi nella sezione precedente.

4.6. Miscele 1 e 2

Nella tabella seguente vengono riassunte le composizioni delle miscele 1 e 2.

	Acqua	Pozzolana	Cemento	Limo-Argilla	a/c
	[1]	[kg]	[kg]	[kg]	adim.
Miscela 1	8	20	0.5	0	16
Miscela 2	7	20	0.2	0	35

Nelle successive invece, si riporta il riepilogo delle prove effettuate sulle miscele 1 e 2; si ricorda che con l'espressione miscele 1bis si fa riferimento al secondo gruppo di prove relative alla miscela 1 (pertanto il mix design è il medesimo) realizzato senza setacciatura e vibrazione (secco).

Miscela 1bis			
Tempo di maturazione [giorni]	Nome prova	Max σ c [kPa]	
2 giorni	Mono 11	19.9	
6 giorni	Mono 20	35.5	
15 giorni	Mono 23 Mono 24	48.4 54.9	
30 giorni	Mono 44 Mono 45 Mono 46	81.7 90.9 74.0	
59 giorni	Mono 119 Mono 120 Mono 121	156.6 138.6 204.3	

Tabella A2 – Miscela 1, a secco: elenco delle prove effettuate con relativi massimi

Miscela 1			
Tempo di maturazione [giorni]	Nome prova	Max σ c [kPa]	
2 giorni	Mono 65 Mono 66	18.4 19.5	
7 giorni	Mono 73 Mono 74 Mono 75	42.7 52.2 46.9	
15 giorni	Mono 101 Mono 105	78.3 98.1	
40 giorni	Mono 147 Mono 148 Mono 149	282.6 238.5 302.4	
61 giorni	Mono 170 Mono 171 Mono 172 Mono 173	335.7 338.4 371.7 366.6	

Tabella A3 – Miscela 1 variata, a secco: elenco delle prove effettuate con relativi massimi

Miscela 2			
Tempo di maturazione [giorni]	Nome prova	Max σ c [kPa]	
2 giorni	Mono 13	18.2	
6 giorni	Mono 19	32.6	
15 giorni	Mono 25	32.7	
58 giorni	Mono 106 Mono 107	210.6 226.8	

Tabella A4 – Miscela 2, a secco: elenco delle prove effettuate con relativi massimi

Nei grafici che seguono vengono riportati gli andamenti sperimentali ottenuti per i campioni il cui codice identificativo è riportato nelle tabelle precedent

Grafico A1 - Curva sforzi-deformazioni a 40 giorni, miscela 1 variata

Grafico A2 - Curva sforzi-deformazioni a 61 giorni, miscela 1 variata

Grafico A3 – Curva sforzi-deformazioni a 58 giorni, miscela 2

Foto A1 – Mono 149: provino alla fine della prova

Foto A2 – Mono 171: rovino alla fine della prova

Foto A3 – Mono 107: provino alla fine della prova

Nella Tabella A5 si riporta il quadro riassuntivo delle rigidezze ottenute per ciascuna miscela come media fra tutte le prove eseguite; tali valori rappresentano la pendenza del tratto iniziale della curva sforzi-deformazioni.

Tempo di maturazione [giorni]	Miscela Media di E [MPa]	
7 giorni	Miscela 1 variata	7
15 giorni	Miscela 1 Miscela 1 variata Miscela 2	7 10 7
30 giorni	Miscela 1 Miscela 1 variata Miscela 2	7 17 8
60 giorni	Miscela 1 Miscela 1 variata Miscela 2	7.5 20 8

Tabella A5 – Rigidezze delle "tre" miscele in funzione del tempo di maturazione

4.7. Miscele 3 e 4

Vengono ora analizzate nel dettaglio due miscele intermedie che, come detto, si differenziano dalle precedenti per la presenza della frazione fine e dalle 5 e 6 per la minor quantità di cemento.

Miscela 3 secco			
Tempo di maturazione [giorni]	Nome prova	Max σ_c [kPa]	
2 giorni	Mono 83 Mono 84 Mono 85	153.3 200.7 190.9	
6 giorni	Mono 108 Mono 109 Mono 110	216.6 158.3 233.9	
15 giorni	Mono 127 Mono 128 Mono 129	305.1 355.9 338.1	
30 giorni	Mono 138 Mono 139 Mono 140	405.8 407.1 452.0	
59 giorni	Mono 181 Mono 182 Mono 183	310.0 326.1 340.3	

Tabella A6 – Miscela 3, maturazione a secco: elenco delle prove effettuate con relativi massimi.

Grafico A4 - Curva sforzi-deformazioni a 2 giorni, miscela 3 a secco

Foto A4 – Mono 85: provino alla fine della prova

Foto A1 – Modalità di rottura del provino a 60 giorni

Miscela 3 in acqua		
Tempo di maturazione [giorni]	Nome prova	Max σ _c [kPa]
3 giorni	Mono 90 Mono 91 Mono 92	34.5 46.6 28.9
7 giorni	Mono 113 Mono 114 Mono 115	40.8 51.1 57.3
15 giorni	Mono 132 Mono 133 Mono 134	58.4 56.4 52.3
30 giorni	Mono 141 Mono 142 Mono 143	74.9 94.4 113.4
60 giorni	Mono 184 Mono 185 Mono 186	84.3 68.1 115.1

ħ Æ **ि** •

Tabella A7 – Miscela 3, in acqua: elenco delle prove effettuate con relativi massimi

Miscela 4 secco			
Tempo di maturazione [giorni]	Nome prova	Max σ c [kPa]	
2 giorni	Mono 26	73.3	
6 giorni	Mono 28 Mono 29 Mono 30	125.9 145.1 144.9	
15 giorni	Mono 47 Mono 48 Mono 49	172.3 171.7 173.9	
30 giorni	Mono 62 Mono 63	285.5 278.6	
70 giorni	Mono 163 Mono 164 Mono 165 Mono 168 Mono 169	234.2 226.9 284.7 359.6 393.4	

Tabella A8 – Miscela 4, a secco: elenco delle prove effettuate con relativi massimi

Miscela 4 in acqua			
Tempo di maturazione [giorni]	Nome prova	Max σ _c [kPa]	
3 giorni	Mono 93 Mono 94 Mono 95	24.7 35.8 17.7	
7 giorni	Mono 116 Mono 117 Mono 118	54.9 70.9 52.9	
15 giorni	Mono 135 Mono 136 Mono 137	57.7 56.5 52.1	
30 giorni	Mono 144 Mono 145 Mono 146	70.9 64.2 50.5	
60 giorni	Mono 187 Mono 188 Mono 189	76.6 102.9 146.8	

Tabella A9 – Miscela 4, "in acqua": elenco delle prove effettuate con relativi massimi

4.8. Miscele 5 e 6

Si riportano infine le tabelle che riassumono i risultati dell'intera campagna sperimentale condotta sulle miscele 5 e 6.

Miscela 5 – a secco		
Tempo di maturazione [giorni]	Nome prova	Max σ _c [kPa]
2 giorni	Mono 56 Mono 57 Mono 58	316.0 326.9 321.6
7 giorni	Mono 67 Mono 68 Mono 69	522.2 537.6 546.3
15 giorni	Mono 96 Mono 97 Mono 98	790.3 750.2 827.8
40 giorni	Mono 161 Mono 162	1078.2 1136.6
60 giorni	Mono 177 Mono 178 Mono 179 Mono 180	1126.6 1239.5 1179.9 1015.6

Tabella A10 – Miscela 5, a secco: elenco delle prove effettuate con relativi massimi

Miscela 5 – in acqua			
Tempo di maturazione [giorni]	Nome prova	Max σ _c [kPa]	
2 giorni	Mono 59 Mono 60 Mono 61	88.4 90.2 95.4	
7 giorni	Mono 70 Mono 71 Mono 72	200.8 170.9 189.7	
15 giorni	Mono 102 Mono 103 Mono 104	284.9 312.5 344.8	
40 giorni	Mono 150 Mono 151 Mono 152	504.2 536.5 493.5	
61 giorni	Mono 174 Mono 175 Mono 176	617.9 705.2 587.4	

Tabella A11 – Miscela	5, in acqua: elenco	o delle prove effettuate	con relativi massimi
-----------------------	---------------------	--------------------------	----------------------

Miscela 6 – a secco		
Tempo di maturazione [giorni]	Nome prova	Max σ _c [kPa]
2 giorni	Mono 32 Mono 33 Mono 34	379.5 436.1 400.1
7 giorni	Mono 39 Mono 42 Mono 43	571.9 706.9 681.4
30 giorni	Mono 77 Mono 78 Mono 79	1030.7 1104.0 1103.8
40 giorni	Mono 122 Mono 123 Mono 124 Mono 125 Mono 126	1217.9 1288.3 1330.5 1319.4 1358.8
60 giorni	Mono 153 Mono 154 Mono 155	1983.5 1962.3 1964.6

Tabella A12 – Miscela 6, a secco: elenco delle prove effettuate con relativi massimi

Miscela 6 – in acqua		
Tempo di maturazione [giorni]	Nome prova	Max σ _c [kPa]
2 giorni	Mono 35 Mono 36 Mono 37	146.4 108.8 90.6
7 giorni	Mono 38 Mono 40 Mono 41	209.3 246.5 305.7
15 giorni	Mono 50 Mono 51 Mono 52	363.5 272.2 331.3
30 giorni	Mono 80 Mono 81 Mono 82	492.3 530.1 421.4
60 giorni	Mono 156 Mono 157 Mono 158	762.1 645.7 662.6

Tabella A13 – Miscela 6, in acqua: elenco delle prove effettuate con relativi massimi Infine si riporta il riepilogo dei valori di rigidezza dedotti per ciascuna miscela:

Tempo di maturazione [giorni]	Prova	E [MPa]
2 giorni	Mono 61	11.20
7 giorni	Mono 70	21.21
15 giorni	Mono 103	39.74
30 giorni	Mono 152	68.91
60 giorni	Mono 174	84.9

Tabella A14 -	Prove effettuate	con relativa	rigidezza,	miscela 5	in acqua
---------------	------------------	--------------	------------	-----------	----------

Tempo di maturazione [giorni]	Prova	E [MPa]
2 giorni	Mono 34	41.19
7 giorni	Mono 43	61.32
30 giorni	Mono 77	59.82
40 giorni	Mono 124	81.45
60 giorni	Mono 154	109.6

Tabella A15 – Prove effettuate con relativa rigidezza, miscela 6 a secco

Tempo di maturazione [giorni]	Prova	E [MPa]
2 giorni	Mono 35	10.46
7 giorni	Mono 38	13.3
15 giorni	Mono 51	24.69
30 giorni	Mono 81	38.52
60 giorni	Mono 158	73.33

Tabella A16 – Prove effettuate con relativa rigidezza, miscela 6 in acqua